Part Number Hot Search : 
0XB6TR EM1564 74HC5 SS34B 001GP7 OM7815H PSD953 PSC3506
Product Description
Full Text Search
 

To Download 10-F006PPA006SB-M682B Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  10-F006PPA006SB-M682B preliminary datasheet flowpim0+pfc 2nd 600v/6a clip in pcb mounting trench fieldstop igbt's for low saturation losses latest generation superjunction mosfet for pfc industrial drives embedded drives 10-F006PPA006SB-M682B t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 26 t c =80 c 36 t h =80 c 32 t c =80 c 48 maxi mum junction temperature t j max 150 c po wer dissipation per diode i 2 t w a 200 types i2t-value maximum ratings i fav a 2 s i fsm condition input rectifier diode 200 a features flowpim0+pfc 2nd target applications schematic dc forward current surge forward current t j =150c t j =t j max p tot t j =t j max t p =10ms 1 revi sion: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition pfc mosfet v ds 600 v t h =80c 10 t c =80 c 11 i d =3,4 a v dd =50v i d =3,4a v dd =50v mosf e t dv/dt ruggedness dv/dt 50 v/ns t h =80c 47 t c =80 c 70 gate -source peak voltage v gs 20 v dv/dt 15 v /ns t j max 150 c pfc diode t h =80c 12 t c =80 c 12 t h =80 c 32 t c =80 c 49 pfc shunt 18 59 t j =t j max 10 v a pul se d drain current p tot e ar avalanche current, repetitive i ar maximum junction temperature i dpulse i d t j =t j max a a mj w aval a nche energy, repetitive avalanche energy, single pulse mj a e as a c w a pea k repetitive reverse voltage t j =25c 175 dc forward current repetitive peak forward current t j max 600 dr a in to source breakdown voltage dc drain current power dissipation reverse diode dv/dt t j =t j max t p limited by t j max t p limited by t j max power dissipation maximum junction temperature dc forward current power dissipation per shunt t j =t j max t c =25c t c =25c 5 w p tot p to t i f i f v rrm i frm tj=25c 3,4 tj = 25c 418 tj=25c 0.63 2 revi sion: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter transistor t h =80c 9 t c =80c 13 t h =80 c 28 t c =80 c 43 t sc t j 150c 6 s v cc v ge = 15v 360 v inverter diode t h =80c 13 t c =80 c 16 t h =80 c 21 t c =80 c 32 18 20 12 t j = t j max t p limited by t j max dc fo rward current p tot gate-emitter peak voltage a i f v rrm t j =25c a v i frm t j =t j max t j =t j max w 175 c s h ort circuit ratings turn off safe operating area repetitive peak forward current power dissipation per diode collector-emitter break down voltage dc collector current pulsed collector current maximum junction temperature peak repetitive reverse voltage power dissipation per igbt maximum junction temperature t j =t j max vce 4 00v, tj top max t p limited by t j max a 600 a v 18 t j m a x p tot i cpulse t j max v ce i c v ge w a v 600 c 1 7 5 3 revi sion: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition dc link capacitor thermal properties insulation properties v is t=2s dc vol tage 4000 v min 12,7 mm min 12,7 mm cti >200 comparative tracking index insulation voltage creepage distance t op operation temperature under switching condition clear ance -40+(tjmax - 25) c storage temperature t stg -40+125 c t c =25 c max. d c voltage v max 500 v 4 revi sion: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet param eter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 1,20 tj=125c 1,17 tj=25c 0,92 tj=125c 0,81 tj=25c 10,9 tj=125c 14,4 tj=25c 0.05 tj=125c thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,20 k/w tj=25c 203 tj=125c 398 tj=25c 2,4 3,0 3,6 tj=125c tj=25c 100 tj=125c tj=25c 1000 tj=125c tj=25c 17 tj=125c 16 tj=25c 2 tj=125c 2 tj=25c 103 tj=125c 113 tj=25c 6 tj=125c 9 tj=25c 0,045 tj=125c 0,091 tj=25c 0,006 tj=125c 0,007 tj=25c 2,83 tj=125c 1,66 tj=25c 50 tj=125c 500 tj=25c 29 tj=125c 31 tj=25c 9 tj=125c 15 tj=25c 0,12 tj=125c 0,29 tj=25c 0,013 tj=125c 0,042 di(rec)max tj=25c 12276 /dt tj=125c 7905 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,95 k/w 50 30 10 3 6 6 480 10 0,00063 9,5 0 100 thermal grease thickness 50um = 1 w/mk f=1mhz a /s mws k/w ns nh c m ppm/k a v nc mws m n a v n a pf k/w a n s 8 5 140 0 6 3 peak recovery current peak rate of fall of recovery current reverse recovery charge pfc diode forward voltage reverse leakage current reverse recovery time 10 static drain to source on resistance 10 v gs =v ds r ds(on) 20 6 0 600 tj=25c 400 0/10 6 tj=25c 6 7,6 32 1,51 reverse current i r v v m ma 25 1600 chara cteristic values forward voltage thresh old voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode value conditions 25 25 gate to source leakage current i gss gate threshold voltage v (gs)th pfc mosfet turn on delay time rise ti me turn off delay time fall time turn-off energy loss per pulse input capacitance turn-on energy loss per pulse output capacitance reverse recovered energy gate resistance gate to source charge pfc shunt temperature coeficient r1 va l ue inductance internal heat resistance q rr i rrm i rm e rec l r thi t rr r t c gate to drain charge total gate charge thermal resistance chip to heatsink per chip c iss r g r thjh q gs q gd v f t f rgoff=4 t r t d(off) t d(on) c oss e on q ge e off rgon=4 rgon=4 600 20c t o 60c zero gate voltage drain current i dss 0 400 5 rev ision: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet param eter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max characteristic values value condi tions tj=25c 5 5,8 6,5 tj=125c tj=25c 1,52 tj=125c 1,71 tj=25c 0,027 tj=125c tj=25c 300 tj=125c tj=25c 103 tj=125c 101 tj=25c 23 tj=125c 26 tj=25c 154 tj=125c 177 tj=25c 96 tj=125c 105 tj=25c 0,19 tj=125c 0,25 tj=25c 0,21 tj=125c 0,27 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 3,38 k/w tj=25c 1,25 1,62 1,95 tj=125c 1,53 tj=25c 3 tj=125c 4 tj=25c 236 tj=125c 341 tj=25c 0,32 tj=125c 0,60 di(rec)max tj=25c 12 /dt tj=125c 30 tj=25c 0,09 tj=125c 0,17 thermal resistance chip to heatsink per chip r thjh 4,44 6 pf nc v 11 mws ns v t=25c t=25c t=100c t=25c ns a na ma 368 no n e thermistor dc li n k capacitor c value c rgon=6 4 deviation of r100 r/r r100=1486 rated resistance r power dissipation constant mw/k power dissipation p mw 0 400 400 6 c ies 600 v ce(sat) i ces r gint c oss 0 480 6 collector-emitter cut-off current incl. diode fall time turn-off delay time turn-on delay time rise time gate-emitter leakage current reverse recovered energy peak rate of fall of recovery current turn-on energy loss per pulse reverse recovered charge inverter diode peak reverse recovery current rever se transfer capacitance diode forward voltage gate charge output capacitance turn-off energy loss per pulse reverse recovery time rgon=64 20 15 6 mws a/ s v k/w input capacitance integrated gate resistor inverter transistor collector-emitter saturation voltage gate e mitter threshold voltage i ges t f e on e off t d(on) i rrm v f erec c rss q rr t rr q gate t r t d(off) v ce =v ge v ge(th) rgoff=64 15 therma l grease thickness 50um = 1 w/mk 15 0 f=1 m hz 3,5 210 100 22000 nf 5 -5 % 6 c 0,0 0009 25 42 28 tj=25c tj=25c 15 b-value b (25/50) tol. 3% t=25c t=25c 4000 k k b-value tol. 3% b (25/100) vincotech ntc reference a 6 rev ision: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 2 50 s t p = 2 50 s t j = 2 5 c t j = 125 c v g e from 7 v t o 17 v in steps of 1 v v ge from 7 v t o 17 v in steps of 1 v figure 3 output inverter igbt figure 4 output inverter fwd typical transfer characteristics typical diode forward current as i c = f(v ge ) a funct ion of forward voltage i f = f(v f ) at at t p = 2 50 s t p = 2 50 s v ce = 10 v out put inverter typical output characteristics 0 3 6 9 12 15 18 0 1 2 3 4 5 v ce (v) i c (a) 0 1 2 3 4 5 6 0 2 4 6 8 10 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 3 6 9 12 15 18 0 0,6 1,2 1,8 2,4 3 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 3 6 9 12 15 18 0 1 2 3 4 5 v ce (v) i c (a) 7 rev ision: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f (r g ) with an inductive load at with an inductive load at t j = 25/1 2 5 c t j = 25/12 5 c v ce = 400 v v ce = 4 00 v v ge = 15 v v ge = 15 v r go n = 64 i c = 6 a r go ff = 64 figure 7 output inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/1 2 5 c t j = 25/12 5 c v ce = 400 v v ce = 4 00 v v ge = 15 v v ge = 15 v r go n = 64 i c = 6 a ou tp ut inverter e on high t e off high t e on low t e off low t 0 0,1 0, 2 0 ,3 0,4 0,5 0 2 4 6 8 10 12 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0 32 64 96 128 160 192 224 256 288 r g ( w ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0,00 0,05 0, 10 0,15 0,20 0,25 0 2 4 6 8 10 12 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0,00 0,05 0,10 0,15 0,20 0,25 0 32 64 96 128 160 192 224 256 288 r g ( w ) e (mws) 8 rev ision: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f (r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v c e = 400 v v ce = 4 00 v v ge = 15 v v ge = 15 v r go n = 64 i c = 6 a r go ff = 64 figure 11 output inverter fwd figure 12 output inverter fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at at t j = 2 5/1 2 5 c t j = 25/12 5 c v ce = 400 v v r = 40 0 v v ge = 15 v i f = 6 a r g on = 6 4 v ge = 15 v ou tput inverter t doff t f t don t r 0,00 0,01 0, 10 1,00 0 2 4 6 8 10 12 i c (a) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0 0,1 0,2 0 ,3 0,4 0,5 0 32 64 96 128 160 192 224 256 288 r gon ( w ww w ) t rr ( m s) t doff t f t don t r 0,00 0,01 0, 10 1,00 0 32 64 96 128 160 192 224 256 288 r g ( w ww w ) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0,0 0,1 0,2 0 ,2 0,3 0,4 0,5 0 2 4 6 8 10 12 i c (a) t rr ( m s) 9 rev ision: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at at t j = 25/1 2 5 c t j = 25/12 5 c v ce = 400 v v r = 40 0 v v ge = 15 v i f = 6 a r g on = 6 4 v ge = 15 v figur e 15 output inverter fwd figure 16 output inverter fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 2 5/1 2 5 c t j = 25/12 5 c v ce = 400 v v r = 40 0 v v ge = 15 v i f = 6 a r g on = 6 4 v ge = 15 v ou tput inverter i rrm t j = t jmax - 25c i rrm t j = 25c 0 2 4 6 8 0 32 64 96 128 160 192 224 256 288 r gon ( w ww w ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 0,2 0, 4 0 ,6 0,8 0 32 64 96 128 160 192 224 256 288 r gon ( w ) q rr ( m c) t j = t jmax -25c i rrm t j = 25c i rrm 0 1 2 3 4 5 0 2 4 6 8 10 12 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 0,2 0,4 0 ,6 0,8 1 0 2 4 6 8 10 12 i c (a) q rr ( m c) 10 re vision: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) di 0 /dt, di rec /dt = f(r gon ) at at t j = 2 5/1 2 5 c t j = 25/12 5 c v ce = 400 v v r = 40 0 v v ge = 15 v i f = 6 a r g on = 6 4 v ge = 15 v figur e 19 output inverter igbt figure 20 output inverter fwd igbt transient thermal impedance fwd tr ansient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 3,38 k /w rthjh = 2,74 k/w r thjh = 4,44 k /w rthjh = 3,60 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,16 1,710 0,13 1,387 0,20 1,973 0,16 1,600 0,70 0,168 0,56 0,136 0,90 0,162 0,73 0,131 1,11 0,044 0,90 0,036 1,46 0,039 1,18 0,032 0,55 0,008 0,45 0,007 0,65 0,007 0,53 0,005 0,34 0,001 0,27 0,001 0,56 0,001 0,46 0,001 0,53 0,000 0,43 0,000 0,67 0,000 0,54 0,000 phase change interface thermal grease phase change interface output inverter thermal grease t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di rec /dt di rec /d t high t 0 200 40 0 6 00 800 1000 1200 0 32 64 96 128 160 192 224 256 288 r gon ( w ww w ) di rec / dt (a/ m s) di o /dt low t di 0 /dt high t di 0 /dt di rec / d t low t di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 50 100 15 0 200 250 300 350 0 2 4 6 8 10 12 i c (a) di rec / dt (a/ m m m m s) di rec /dt di 0 /dt 11 re vision: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a collect or current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 17 5 c t j = 175 c v g e = 15 v figure 23 output inverter fwd figure 24 output inverter fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 17 5 c t j = 175 c o utput inverter 0 10 20 30 40 50 60 0 50 100 150 200 t h ( o c) p tot (w) 0 3 6 9 12 15 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 0 50 100 150 200 t h ( o c) i f (a) 12 re vision: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function gate v oltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) at at d = s ingle pulse i c = 6 a t h = 80 o c v ge = 15 v t j = t jmax oc figure 2 7 output inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical short circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge ) v ge = f(q ge ) at at v ce = 6 00 v v c e 6 00 v t j 17 5 oc t j = 175 oc o utput inverter v ce (v) i c (a) 10 -1 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 12 14 16 18 0 10 20 30 40 50 60 q g (nc) v ge (v) 120v 480v 0 2 4 6 8 10 12 14 10 11 12 13 14 15 v ge (v) t sc (s) 0 20 40 60 80 100 12 13 14 15 16 17 18 19 20 v ge (v) i c (sc) 13 re vision: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet figure 29 igbt reverse bias safe operating area i c = f(v ce ) at t j = t jm ax -25 oc u ccm i nus =u ccplus switching mode : 3phase spwm output inverter 0 5 10 15 20 25 0 100 200 300 400 500 600 700 v ce (v) i c (a) i c max v ce max i c module i c chip 14 re vision: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet figure 1 pfc mosfet figure 2 pfc mosfet typical output characteristics typical output characteristics i d = f(v ds ) i d = f(v ds ) at at t p = 2 50 s t p = 2 50 s t j = 2 5 c t j = 125 c v gs from 0 v t o 20 v in steps of 2 v v gs from 0 v t o 20 v in steps of 2 v figure 3 pfc mos fet figure 4 pfc fwd typical transfer characteristics typical diode forward current as a function of forward voltage i d = f(v gs ) i f = f(v f ) at at t p = 2 50 s t p = 2 50 s v ds = 10 v pfc 0 5 10 15 20 25 30 35 0 1 2 3 4 5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 35 0 2 4 6 8 10 v ds (v) i d (a) 0 5 10 15 20 25 30 35 0 2 4 6 8 10 v ds (v) i d (a) 0 2 4 6 8 10 0 1 2 3 4 5 6 v gs (v) i d (a) t j = 25c t j = t jmax -25c 15 rev i sion: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet figure 5 pfc mosfet figure 6 pfc mosfet typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i d ) e = f (r g ) with an inductive load at with an inductive load at t j = 25/1 2 5 c t j = 25/12 5 c v ds = 400 v v ds = 4 00 v v gs = 10 v v gs = 1 0 v r gon = 4 i d = 6 a r goff = 4 figure 7 p fc mos fet figure 8 pfc mosfet typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector (drain) current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/1 2 5 c t j = 25/12 5 c v ds = 400 v v ds = 4 00 v v gs = 10 v v gs = 1 0 v r gon = 4 i d = 6 a r goff = 4 pfc t j = t jmax -25c e rec t j = 25c e rec 0,00 0,01 0, 02 0,03 0,04 0,05 0,06 0 2 4 6 8 10 12 i c (a) e (mws) t j = t jmax - 25c e rec t j = 25c e rec 0,00 0,01 0, 02 0,03 0,04 0,05 0 4 8 12 16 20 r g ( w ww w ) e (mws) e off e on e on e off 0 0,03 0, 06 0,09 0,12 0,15 0 2 4 6 8 10 12 i c (a) e (mws) t j = t jmax -25c e off e on e on t j =25c e off 0 0,03 0,06 0,09 0,12 0 4 8 12 16 20 r g ( w ww w ) e (mws) 16 re vision: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet figure 9 pfc mosfet figure 10 pfc mosfet typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i d ) t = f (r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v d s = 400 v v ds = 4 00 v v gs = 10 v v gs = 1 0 v r gon = 4 i c = 6 a r goff = 4 figure 1 1 pfc fwd figur e 12 pfc fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 2 5/1 2 5 c t j = 25/12 5 c v ce = 400 v v r = 40 0 v v ge = 10 v i f = 6 a r go n = 4 ,01 v gs = 10 v pfc t doff t don t r 0,00 0,01 0, 10 1,00 0 2 4 6 8 10 12 i d (a) t ( m s) t doff t don t r 0,00 0,01 0, 10 1,00 0 4 8 12 16 20 r g ( w ww w ) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0,00 0,01 0, 02 0,03 0,04 0 4 8 12 16 20 r gon ( w ww w ) t rr ( m s) t rr t rr 0 0,005 0 ,01 0,015 0,02 0 2 4 6 8 10 12 i c (a) t rr ( m s) 17 re vision: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet figure 13 pfc fwd figure 14 pfc fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at at t j = 25/1 2 5 c t j = 25/12 5 c v ce = 400 v v r = 400 v v ge = 10 v i f = 6 a r g on = 4 v gs = 10 v figure 1 5 pfc fwd figur e 16 pfc fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 2 5/1 2 5 c t j = 25/12 5 c v ce = 400 v v r = 40 0 v v ge = 10 v i f = 6 a r go n = 4 v g s = 10 v pfc i rrm t j = t jmax -25c t j = 25c i rrm 0 10 20 30 40 0 4 8 1 2 16 20 r gon ( w ww w ) irr m (a) t j = t jmax - 25c q rr t j = 25c q rr 0,0 0,1 0, 2 0 ,3 0,4 0 4 8 12 16 20 r gon ( w ) q rr ( m c) t j = t jmax - 25c i rrm t j = 25c i rrm 0 10 20 30 40 0 2 4 6 8 1 0 12 i c (a) irr m (a) t j = t jmax - 25c q rr t j = 25c q rr 0 0,1 0, 2 0 ,3 0,4 0 2 4 6 8 10 12 i c (a) q rr ( m c) 18 re vision: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet figure 17 pfc fwd figure 18 pfc fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt, di rec /dt = f(r gon ) at at t j = 2 5/1 2 5 c t j = 25/12 5 c v ce = 400 v v r = 40 0 v v ge = 10 v i f = 6 a r g on = 4 v g s = 10 v figure 19 pfc mos fet figure 20 pfc fwd igbt/mosfet transient thermal impedance fwd transient therm al impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 1,51 k /w r thjh = 1,22 k /w r thjh = 2,95 k /w r thjh = 2,39 k /w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,07 2,94 0,06 2,38 0,11 2,95 0,09 2,39 0,21 0,46 0,17 0,37 0,51 0,31 0,41 0,26 0,65 0,12 0,53 0,09 1,04 0,08 0,84 0,06 0,31 0,03 0,25 0,02 0,58 0,01 0,47 0,01 0,15 0,01 0,12 0,01 0,45 0,00 0,37 0,00 0,11 0,00 0,09 0,00 0,27 0,00 0,22 0,00 pfc thermal grease therma l grease phase change interface phase change interface t j = 25c t j = t jmax - 25c 0 3000 60 00 9000 12000 15000 0 4 8 12 16 20 r gon ( w ) di rec / dt (a/ m s) di 0 /dt di rec /dt t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t j = t jmax -25c t j = t jmax - 25c t j = 25c t j = 25c 0 2000 40 00 6000 8000 10000 12000 14000 0 2 4 6 8 10 12 i c (a) di rec / dt (a/ m s) di 0 /dt di rec /d t 19 re vision: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet figure 21 pfc mosfet figure 22 pfc mosfet power dissipation as a collect or/drain current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 15 0 o c t j = 150 oc v g s = 10 v figure 23 pfc fwd fi gure 24 pfc fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 17 5 o c t j = 175 oc p fc 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 3 6 9 12 15 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 50 60 0 50 100 150 200 t h ( o c) p tot (w) 0 3 6 9 12 15 0 50 100 150 200 t h ( o c) i f (a) 20 re vision: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet figure 2 5 pfc mos fet figure 26 pfc mosfet safe operating area as a function gate v oltage vs gate charge of drain-source voltage i d = f(v ds ) v gs = f(qg) at at d = s ingle pulse i d = 6 a t h = 80 o c v gs = 10 v t j = t jm ax oc figure 2 9 igbt rev erse bias safe operating area i c = f(v ce ) at t j = t jm ax -25 oc u ccm i nus =u ccplus switching mode : 3phase spwm pfc v ds (v) i d (a) 10 3 10 0 10 - 10 1 10 2 10 100us 1ms 10ms 100ms dc 10 2 10 0 0 1 2 3 4 5 6 7 8 9 10 0 10 20 30 40 50 60 70 qg (nc) v gs (v) 120v 480v 0 5 10 15 20 25 0 100 200 300 400 500 600 700 v ce (v) i c (a) i c max v ce max i c module i c chip 21 re vision: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as diode tr ansient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 2 50 s d = t p / t r thjh = 2,20 k /w figure 3 rectif ier diode figure 4 rectifier diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 15 0 o c t j = 150 oc i nput rectifier bridge 0 20 40 60 80 0 0,5 1 1,5 2 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i f (a) 22 re vision: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet figure 1 thermistor figure 2 thermistor typical ntc characteristic typical ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 4000 8 0 00 12000 16000 20000 24000 25 50 75 100 125 t (c) r/  [ ] w = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - 25 100/25 1 1 25 )( tt b ertr 23 re vision: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet t j 125 c r gon 64  r goff 64  figure 1 o utput inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -15 v v g e (0%) = -15 v v ge (100%) = 15 v v ge ( 100%) = 15 v v c (1 00%) = 400 v v c ( 100%) = 400 v i c ( 100%) = 6 a i c (10 0%) = 6 a t doff = 0,18 s t do n = 0,10 s t eo ff = 0,54 s t eo n = 0,27 s figur e 3 output inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 400 v v c ( 100%) = 400 v i c ( 100%) = 6 a i c (10 0%) = 6 a t f = 0,1 1 s t r = 0 ,03 s sw itching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -25 0 25 50 75 10 0 125 -0,2 0 0,2 0,4 0,6 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -50 0 50 100 15 0 200 2,9 3 3,1 3,2 3,3 3,4 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -25 0 25 50 75 10 0 125 0 0,1 0,2 0,3 0,4 0,5 time (us) % v ce i c t f i c10% i c90% -50 0 50 100 15 0 200 3 3,05 3,1 3,15 3,2 3,25 3,3 time(us) % t r v ce i c 24 rev i sion: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 2,41 k w p on (100%) = 2,41 k w e off (100%) = 0,27 m j e on (100%) = 0,25 m j t eoff = 0,54 s t eo n = 0,27 s figur e 7 output inverter igbt figure 8 output inverter fwd gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t rr v geoff = -15 v v d ( 100%) = 400 v v ge on = 15 v i d (1 00%) = 6 a v c (10 0%) = 400 v i rr m (100%) = -4 a i c (1 00%) = 6 a t rr = 0, 34 s q g = 6 5,25 nc switching definitions output inverter i c 1% v ge 90% -25 0 25 50 75 10 0 125 -0,2 0 0,2 0,4 0,6 time (us) % p off e off t eoff v ce 3% v ge 10% -25 0 25 50 75 10 0 125 150 2,9 3 3,1 3,2 3,3 3,4 time(us) % p on e on t eon -20 -15 -10 -5 0 5 10 15 20 -10 0 10 20 30 40 50 60 70 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -150 -100 -5 0 0 50 100 150 3 3,1 3,2 3,3 3,4 3,5 3,6 time(us) % i d v d fitted 25 rev i sion: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet figure 9 output inverter fwd figure 10 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 6 a p rec ( 100%) = 2,41 k w q rr (100%) = 0,60 c e re c (100%) = 0,17 m j t qrr = 0,73 s t er ec = 0,73 s sw itching definitions output inverter t qrr -100 -50 0 50 1 0 0 150 2,8 3 3,2 3,4 3,6 3,8 4 % i d q rr time(us) -25 0 25 50 75 100 125 3 3,2 3,4 3,6 3,8 4 time(us) % p rec e rec t erec 2 6 r e v i sion: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet t j 125 c r gon 4  r goff 4  figure 1 p fc mos fet figure 2 pfc mosfet turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of t don , t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = 0 v v ge ( 0 %) = 0 v v ge (1 00%) = 10 v v ge ( 100%) = 10 v v c (1 00%) = 400 v v c ( 100%) = 400 v i c ( 100%) = 6 a i c (10 0%) = 6 a t doff = 0,11 s t do n = 0,02 s t eo ff = 0,14 s t eo n = 0,03 s figur e 3 pfc mos fet figure 4 pfc mosfet turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 400 v v c ( 100%) = 400 v i c ( 100%) = 6 a i c (10 0%) = 6 a t f = 0,0 1 s t r = 0 ,002 s = = = s witching definitions pfc general conditions i c10% v ge10% t don v ce3% -100 0 100 200 3 00 400 500 600 2,98 3 3,02 3,04 3,06 time(us) % i c v ce t eon v ge i c 1% v ce 90% v ge 90% -50 -25 0 25 50 7 5 100 125 -0,1 -0,05 0 0,05 0,1 0,15 time (us) % t doff t eoff v ce i c v ge fitted i c10% i c 90% i c 60% i c 40% -50 -25 0 25 50 7 5 100 125 0,02 0,04 0,06 0,08 0,1 0,12 0,14 time (us) % v ce i c t f i c 10% i c 90% -100 0 100 200 3 00 400 500 600 3,01 3,015 3,02 3,025 3,03 3,035 3,04 time(us) % t r v ce i c 27 rev i sion: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet figure 5 pfc mosfet figure 6 pfc mosfet turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 2,45 k w p on (100%) = 2,45 k w e off (100%) = 0,01 m j e on (100%) = 0,09 m j t eoff = 0,14 s t eo n = 0,032 5 s figure 7 pfc mos fet figure 8 pfc fwd gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t rr v geoff = 0 v v d (10 0%) = 400 v v ge on = 10 v i d (1 00%) = 6 a v c (10 0%) = 400 v i rr m (100%) = -31 a i c ( 100%) = 6 a t rr = 0, 02 s q g = 5 1,14 nc switching definitions pfc i c 1% u ge90% -50 0 50 100 15 0 200 -0,1 -0,05 0 0,05 0,1 0,15 time (us) % p off e off t eoff u ce 3% u ge10% -100 0 100 200 3 00 400 500 2,98 3 3,02 3,04 3,06 time(us) % p on e on t eon -4 -2 0 2 4 6 8 10 12 -10 0 10 20 30 40 50 60 qg (nc) uge (v) i rrm10% i rrm90% i rrm100% t rr -600 -500 -4 00 -300 -200 -100 0 100 200 2,975 2,995 3,015 3,035 3,055 3,075 time(us) % i d u d fitted 28 re vision: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet figure 9 pfc fwd figure 10 pfc fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 6 a p rec ( 100%) = 2,45 k w q rr (100%) = 0,29 c e re c (100%) = 0,04 m j t qint = 0,03 s t er ec = 0,03 s sw itching definitions pfc t qint -100 -50 0 50 10 0 150 200 3 3,01 3,02 3,03 3,04 3,05 3,06 time(us) % i d q rr -50 0 50 100 150 200 250 300 350 3 3,01 3,02 3,03 3,04 3,05 3,06 3,07 time(us) % p rec e rec t erec 29 rev i sion: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet version ordering code in datamatrix as in packaging barcode as without thermal paste 17mm housing 10-F006PPA006SB-M682B m682b m682-b outline pinout ordering code & marking ordering code and marking - outline - pinout 30 re vision: 1 copyright by vincotech
10-F006PPA006SB-M682B preliminary datasheet product status definitions formative or in design first production full production disclaimer life support policy as used herein: target product status datasheet status definition this datasheet contains the design specifications for product development. specifications may change in any manner without notice. the data contained is exclusively intended for technically trained staff. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. preliminary this datasheet contains preliminary data, and supplementary data may be published at a later date. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. final this datasheet contains final specifications. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. 31 rev ision: 1 copyright by vincotech


▲Up To Search▲   

 
Price & Availability of 10-F006PPA006SB-M682B

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X